Adaptive Moving Average Formula Excel
¿Los promedios móviles adaptativos conducen a mejores resultados? Los promedios móviles son una herramienta favorita de los comerciantes activos. Sin embargo, cuando los mercados se consolidan, este indicador conduce a numerosos oficios whipsaw, resultando en una frustrante serie de pequeñas victorias y pérdidas. Los analistas han pasado décadas tratando de mejorar el promedio móvil simple. En este artículo, miramos estos esfuerzos y encontramos que su búsqueda ha llevado a útiles herramientas comerciales. Pros y contras de los promedios móviles Las ventajas y desventajas de los promedios móviles fueron resumidos por Robert Edwards y John Magee en la primera edición de Technical Analysis of Tendencias de Stock. Cuando dijeron y, fue en 1941 que hicimos el descubrimiento con alegría (aunque muchos otros lo habían hecho antes) que mediante el promedio de los datos para un número determinado de días uno podría derivar una especie de línea de tendencia automática que definitivamente interpretar los cambios de Tendencia Parecía casi demasiado bueno para ser verdad. De hecho, era demasiado bueno para ser verdad. Con las desventajas superando las ventajas, Edwards y Magee abandonaron rápidamente su sueño de negociar de un bungalow de la playa. Pero 60 años después de que escribieron esas palabras, otros persisten en tratar de encontrar una herramienta simple que sin esfuerzo entregar las riquezas de los mercados. Promedios móviles sencillos Para calcular una media móvil simple. Agregar los precios para el período de tiempo deseado y dividir por el número de períodos seleccionados. Encontrar un promedio móvil de cinco días requeriría sumar los cinco precios de cierre más recientes y dividir por cinco. Si el cierre más reciente está por encima de la media móvil, se considerará que la acción está en una tendencia alcista. Las tendencias de baja se definen por los precios que operan por debajo de la media móvil. (Para obtener más información, consulte nuestro tutorial de Medias móviles.) Esta propiedad que define la tendencia hace posible que las medias móviles generen señales comerciales. En su aplicación más simple, los comerciantes compran cuando los precios se mueven por encima de la media móvil y se venden cuando los precios cruzan por debajo de esa línea. Un enfoque como este se garantiza para poner al comerciante en el lado derecho de cada comercio significativo. Desafortunadamente, al alisar los datos, los promedios móviles se quedarán a la zaga de la acción del mercado y el comerciante casi siempre devolverá una gran parte de sus ganancias incluso a las mayores operaciones ganadoras. Promedios móviles exponenciales Los analistas parecen gustar la idea de la media móvil y han pasado años tratando de reducir los problemas asociados con este rezago. Una de estas innovaciones es el promedio móvil exponencial (EMA). Este enfoque asigna una ponderación relativamente más alta a los datos recientes, y como resultado se mantiene más cerca de la acción del precio que un simple promedio móvil. La fórmula para calcular una media móvil exponencial es: EMA (Weight Close) ((1 peso) EMAy) Donde: El peso es la constante de suavizado seleccionada por el analista EMAy es la media móvil exponencial de ayer Un valor de ponderación común es de 0.181, que Está cerca de una media móvil simple de 20 días. Otro es 0.10, que es aproximadamente una media móvil de 10 días. A pesar de que reduce el retraso, el promedio móvil exponencial no aborda otro problema con los promedios móviles, que es que su uso para las señales comerciales dará lugar a un gran número de operaciones perdidas. En Nuevos Conceptos en Sistemas Técnicos de Negociación. Welles Wilder estima que los mercados sólo tienden una cuarta parte del tiempo. Hasta 75 de la acción comercial se limita a rangos estrechos, cuando las señales de compra-venta promedio móvil se generarán repetidamente a medida que los precios se mueven rápidamente por encima y por debajo de la media móvil. Para abordar este problema, varios analistas han sugerido variar el factor de ponderación del cálculo EMA. Adaptación de los promedios móviles a la acción del mercado Un método para abordar las desventajas de los promedios móviles es multiplicar el factor de ponderación por una razón de volatilidad. Hacer esto significaría que el promedio móvil estaría más lejos del precio actual en mercados volátiles. Esto permitiría a los ganadores correr. Como una tendencia llega a su fin y los precios se consolidan. El promedio móvil se acercaría a la acción actual del mercado y, en teoría, permitiría al comerciante mantener la mayor parte de las ganancias capturadas durante la tendencia. En la práctica, la relación de volatilidad puede ser un indicador como el Bollinger Bandwidth, que mide la distancia entre las Bandas de Bollinger. Perry Kaufman sugirió reemplazar la variable de peso en la fórmula EMA con una constante basada en el índice de eficiencia (ER) en su libro, New Trading Systems and Methods. Este indicador está diseñado para medir la fuerza de una tendencia, definida dentro de un rango de -1.0 a 1.0. Se calcula con una fórmula simple: ER (cambio de precio total para el período) / (suma de cambios de precios absolutos para cada barra) Considere una acción que tiene un rango de cinco puntos cada día y al final de cinco días ha ganado un Total de 15 puntos. Esto daría lugar a un ER de 0,67 (15 puntos de movimiento ascendente dividido por el total de 25 puntos de rango). Si este stock disminuyera 15 puntos, el ER sería -0.67. El principio de la eficiencia de las tendencias se basa en la cantidad de movimiento direccional (o tendencia) que se obtiene por unidad de movimiento de precios a lo largo de un período de un año. Definido. Un ER de 1,0 indica que la acción está en una tendencia alcista perfecta -1,0 representa una tendencia bajista perfecta. En términos prácticos, los extremos rara vez se alcanzan. Para aplicar este indicador para encontrar el promedio móvil adaptable (AMA), los comerciantes tendrán que calcular el peso con la siguiente fórmula, bastante compleja: C (ER SCF SCS) SCS 2 Donde: SCF es la constante exponencial para el más rápido EMA admisible (generalmente 2) SCS es la constante exponencial para el EMA más lento permitido (a menudo 30) ER es la relación de eficiencia que se anotó anteriormente El valor de C se utiliza entonces en la fórmula EMA en lugar de la variable de peso más simple. Aunque difícil de calcular a mano, el promedio móvil adaptable se incluye como una opción en casi todos los paquetes de software comercial. En la Figura 1 se muestran ejemplos de una media móvil simple (línea roja), una media móvil exponencial (línea azul) y la media móvil adaptativa (línea verde). (Para más información sobre la EMA, consulte Exploración de la media móvil exponencialmente ponderada. Figura 1: El AMA está en verde y muestra el mayor grado de aplanamiento en la acción de alcance que se ve en el lado derecho de este gráfico. En la mayoría de los casos, la media móvil exponencial, mostrada como la línea azul, es la más cercana a la acción del precio. La media móvil simple se muestra como la línea roja. Los tres promedios móviles que se muestran en la figura son todos propensos a los oficios whipsaw en varias ocasiones. Este inconveniente de los promedios móviles ha sido hasta ahora imposible de eliminar. Conclusión Robert Colby probó cientos de herramientas de análisis técnico en The Encyclopedia of Technical Market Indicators. Concluyó, aunque el promedio móvil adaptable es una idea interesante más nueva con considerable atractivo intelectual, nuestras pruebas preliminares no muestran ninguna ventaja práctica real a este método de suavización de tendencia más complejo. Esto no significa que los comerciantes deben ignorar la idea. La AMA podría combinarse con otros indicadores para desarrollar un sistema comercial rentable. (Para obtener más información sobre este tema, lea Descubriendo los canales de Keltner y el oscilador de Chaikin.) El ER puede utilizarse como un indicador de tendencias independiente para detectar las oportunidades comerciales más rentables. Como un ejemplo, las razones por encima de 0,30 indican fuertes subidas y representan compras potenciales. Alternativamente, dado que la volatilidad se mueve en ciclos, las poblaciones con la menor tasa de eficiencia pueden ser observadas como oportunidades de ruptura. MetaTrader 5 - Indicadores Indicador Técnico de Adaptación Movible Promedio Fractal (FRAMA) fue Desarrollado por John Ehlers. Este indicador se construye sobre la base del algoritmo de la media móvil exponencial. En el que el factor de suavizado se calcula sobre la base de la dimensión fractal actual de la serie de precios. La ventaja de FRAMA es la posibilidad de seguir fuertes movimientos de tendencia y de frenar suficientemente en los momentos de consolidación de precios. Todos los tipos de análisis utilizados para las medias móviles pueden aplicarse a este indicador. FRAMA (i) - valor actual de FRAMA Precio (i) - precio actual FRAMA (i) - precio actual FRAMA (i) (I-1) - valor previo de FRAMA A (i) - factor de corriente de suavizado exponencial. El factor de suavizado exponencial se calcula de acuerdo con la siguiente fórmula: A (i) EXP (-4.6 (D (i) - 1)) D (i) - dimensión fractal actual EXP () - función matemática del exponente. La dimensión fractal de una recta es igual a uno. Se ve por la fórmula que si D1, entonces A EXP (-4.6 (1-1)) EXP (0) 1. Así, si el precio cambia en líneas rectas, no se utiliza el suavizado exponencial, porque en tal caso la fórmula Se ve así: FRAMA (i) 1 Precio (i) (1 - i) FRAMA (i-1) Precio (i) El indicador sigue exactamente el precio. La dimensión fractal de un plano es igual a dos. De la fórmula obtenemos que si D2, entonces el factor de suavizado A EXP (-4.6 (2-1)) EXP (-4.6) 0.01. Un valor tan pequeño del factor de suavizado exponencial se obtiene en momentos en que el precio hace un fuerte movimiento de dientes de sierra. Una desaceleración tan fuerte corresponde a una media móvil simple de aproximadamente 200 periodos. Fórmula de la dimensión fractal: D (LOG (N1 N2) - LOG (N3)) / LOG (2) Se calcula sobre la base de la fórmula adicional: N (Length, i) (HighestPrice (i) (I) - valor mínimo actual para los períodos de longitud Los valores N1, N2 y N3 son respectivamente iguales a: N1 (i) N (Longitud, i) N2 (i) N ( Longitud, i Longitud) N3 (i) N (2 Longitud, i) Como lo que acabas de leer Digg o Tipd it. El objetivo de Finance4Traders es ayudar a los comerciantes a empezar por llevar a la investigación imparcial y las ideas. Desde finales de 2005, he estado desarrollando estrategias de negociación sobre una base personal. No todos estos modelos son adecuados para mí, pero otros inversores o comerciantes pueden encontrarlos útiles. Después de todo, las personas tienen diferentes metas y hábitos de inversión / negociación. Así, Finance4Traders se convierte en una plataforma conveniente para difundir mi trabajo. (Lea más acerca de Finance4Traders) Por favor, utilice este sitio web de manera apropiada y considerada. Esto significa que debe citar Finance4Traders por lo menos proporcionando un enlace a este sitio si le sucede a utilizar cualquiera de nuestro contenido. Además, no se le permite hacer uso de nuestro contenido de una manera ilegal. Usted debe también entender que nuestro contenido se proporciona sin ninguna garantía y usted debe verificar independientemente nuestro contenido antes de confiar en ellos. Hacer referencia a la política de contenido del sitio y la política de privacidad al visitar este sitio. Una estrategia comercial es muy similar a una estrategia corporativa. Estudiar críticamente sus recursos le ayudará a tomar decisiones más efectivas. (Leer más) 8226 Entender los indicadores técnicos Los indicadores técnicos son más que simples ecuaciones. Los indicadores bien desarrollados, cuando se aplican científicamente, son en realidad herramientas para ayudar a los comerciantes a extraer información crítica de los datos financieros. (Leer más) 8226 Por qué prefiero utilizar Excel Excel presenta los datos visualmente. Esto hace que sea mucho más fácil para usted entender su trabajo y ahorrar tiempo. Introducción Desarrollado por Perry Kaufman, Kaufman039s Adaptive Moving Average (KAMA) es una media móvil diseñada para contabilizar el ruido del mercado o la volatilidad. KAMA seguirá de cerca los precios cuando las oscilaciones de precios son relativamente pequeñas y el ruido es bajo. KAMA se ajustará cuando las oscilaciones de los precios se amplíen y sigan los precios desde una mayor distancia. Este indicador de tendencia puede ser usado para identificar la tendencia general, los puntos de cambio de tiempo y los movimientos de los precios de los filtros. Cálculo Hay varios pasos requeridos para calcular la media móvil adaptable de Kaufman039s. Primero debemos comenzar con los ajustes recomendados por Perry Kaufman, que son KAMA (10,2,30). 10 es el número de períodos para la Eficiencia (ER). 2 es el número de períodos para la constante EMA más rápida. 30 es el número de períodos para la constante EMA más lenta. Antes de calcular KAMA, necesitamos calcular la Relación de Eficiencia (ER) y la Constante Suavizante (SC). Desglosar la fórmula en nuggets de tamaño de mordida hace que sea más fácil entender la metodología detrás del indicador. Tenga en cuenta que ABS significa Absolute Value. Ratio de eficiencia (ER) El ER es básicamente el cambio de precio ajustado para la volatilidad diaria. En términos estadísticos, la Eficiencia Ratio nos dice la eficiencia fractal de los cambios de precios. ER fluctúa entre 1 y 0, pero estos extremos son la excepción, no la norma. ER sería 1 si los precios subieron 10 períodos consecutivos o por 10 períodos consecutivos. ER sería cero si el precio no cambia durante los 10 períodos. Constante de suavizado (SC) La constante de suavizado utiliza la ER y dos constantes de suavizado basadas en una media móvil exponencial. Como habrás notado, la Constante Suavizante utiliza las constantes de suavizado para una media móvil exponencial en su fórmula. (2/301) es la constante de suavizado para un EMA de 30 periodos. El SC más rápido es la constante de suavizado para EMA más corto (2 períodos). El SC más lento es la constante de suavizado para el EMA más lento (30 períodos). Tenga en cuenta que el 2 al final es cuadrar la ecuación. KAMA Con la Eficiencia Ratio (ER) y Smoothing Constant (SC), ahora estamos listos para calcular Kaufman039s Adaptive Moving Average (KAMA). Puesto que necesitamos un valor inicial para comenzar el cálculo, el primer KAMA es simplemente una media móvil simple. Los cálculos siguientes se basan en la siguiente fórmula. Ejemplo de cálculo / gráfico Las imágenes de abajo muestran una captura de pantalla de una hoja de cálculo de Excel utilizada para calcular KAMA y el gráfico QQQ correspondiente. Uso y Señales Los cartistas pueden usar KAMA como cualquier otro indicador de tendencia siguiente, como un promedio móvil. Los cartistas pueden buscar cruces de precios, cambios direccionales y señales filtradas. En primer lugar, una cruz por encima o por debajo de KAMA indica cambios direccionales en los precios. Al igual que con cualquier media móvil, un sistema de crossover simple generará muchas señales y muchos whipsaws. Los cartistas pueden reducir los whipsaws aplicando un filtro de precio o tiempo a los crossovers. Uno podría requerir que el precio mantenga la cruz durante un número determinado de días o requiera que la cruz exceda a KAMA por porcentaje establecido. En segundo lugar, los cartistas pueden utilizar la dirección de KAMA para definir la tendencia general de una seguridad. Esto puede requerir un ajuste de parámetro para suavizar el indicador. Los cartistas pueden cambiar el parámetro medio, que es la constante EMA más rápida, para suavizar KAMA y buscar cambios direccionales. La tendencia es hacia abajo mientras KAMA está cayendo y forjando mínimos más bajos. La tendencia es hasta mientras KAMA está subiendo y forjando máximos más altos. El ejemplo de Kroger a continuación muestra KAMA (10,5,30) con una fuerte tendencia alcista de diciembre a marzo y una tendencia al alza menos pronunciada de mayo a agosto. Y finalmente, los cartistas pueden combinar señales y técnicas. Los cartistas pueden usar un KAMA a más largo plazo para definir la tendencia más grande y un KAMA a más corto plazo para las señales comerciales. Por ejemplo, KAMA (10, 5, 30) podría utilizarse como un filtro de tendencia y ser considerado alcista al subir. Una vez alcista, los cartistas podrían buscar cruces alcistas cuando el precio se mueve por encima de KAMA (10,2,30). El ejemplo siguiente muestra MMM con un aumento de KAMA a largo plazo y cruces alcistas en diciembre, enero y febrero. A largo plazo KAMA rechazó en abril y hubo cruces bajistas en mayo, junio y julio. SharpCharts KAMA se puede encontrar como una superposición de indicadores en el Workbench SharpCharts. La configuración predeterminada aparecerá automáticamente en el cuadro de parámetros una vez que se seleccione y los chartists pueden cambiar estos parámetros para adaptarlos a sus necesidades analíticas. El primer parámetro es para la Eficiencia Ratio y los chartistas deben abstenerse de aumentar este número. En su lugar, los artistas pueden reducirlo para aumentar la sensibilidad. Los cartistas que buscan suavizar KAMA para un análisis de tendencias a largo plazo pueden incrementar el parámetro medio de forma incremental. Aunque la diferencia es sólo 3, KAMA (10,5,30) es significativamente más suave que KAMA (10,2,30). Estudio adicional Del creador, el libro a continuación ofrece información detallada sobre indicadores, programas, algoritmos y sistemas, incluyendo detalles sobre KAMA y otros sistemas de media móvil. Sistemas y Métodos de Negociación Perry KaufmanKaufman Estrategia de Negociación de Moving Average Adaptive (Setup 038 Filter) I. Estrategia de Negocio Desarrollador: Perry Kaufman (Kaufman Adaptive Moving Average 8211 KAMA). Fuente: Kaufman, P. J. (1995). Comercio Más Inteligente. Mejorar el rendimiento en mercados cambiantes. Nueva York: McGraw-Hill, Inc. Concepto: Estrategia de negociación basada en un filtro de ruido adaptativo. Objetivo de la investigación: Verificación del rendimiento de la configuración y el filtro. Especificación: Tabla 1. Resultados: Figura 1-2. Establecimiento comercial: Largas operaciones: El promedio móvil adaptable (AMA) aparece. Operaciones Cortas: La Media Movible Adaptativa baja. Nota: La línea de tendencia AMA parece detenerse cuando los mercados no tienen dirección. Cuando la tendencia de los mercados, la línea de tendencia AMA captura. Entrada de Comercio: Largas Operaciones: Una compra al cierre se coloca después de una configuración alcista. Operaciones cortas: Una venta al cierre se coloca después de una configuración bajista. Salidas comerciales: Cuadro 1. Cartera: 42 mercados de futuros de cuatro grandes sectores del mercado (materias primas, divisas, tasas de interés e índices de renta variable). Datos: 32 años desde 1980. Plataforma de Pruebas: MATLAB. II. Prueba de sensibilidad Todas las gráficas tridimensionales son seguidas por las gráficas de contorno en 2D para el factor de beneficio, la relación de Sharpe, el índice de desempeño de úlcera, el CAGR, la reducción máxima, el porcentaje de operaciones rentables y el promedio. Ganar / Promedio Índice de siniestralidad. La imagen final muestra la sensibilidad de la curva de equidad. Variables probadas: Amplitud de ERL FilterIndex (Definiciones: Tabla 1): Figura 1 Desempeño de la cartera (Entradas: Tabla 1 Compensación amp Slippage: 0). AMA (ERLength) es el promedio móvil adaptativo durante un período de ERLength. ERLength es un período de retroceso de la Efficiency Ratio (ER). ERi abs (Directioni / Volatilityi), donde 8220abs8221 es el valor absoluto. , Donde 82208221 es la suma a lo largo de un periodo de ERLength, DeltaClosei Closei Closei 1. FastMALength es un período de la media de movimiento rápido. SlowMALength es un período de la media móvil lenta. AMAi AMAi 1 ci (Closei AMAi 1), donde ci (ERi (Fast Slow) Slow) 2, Fast 2 / (FastMALength 1), Slow 2 / (SlowMALength 1). Long: Si AMAi gt AMAi AMAi AMAi 1 AMAi 1 AMAi 2 AMAMAi 1 (Media Movible Adaptativa se convierte con un pivote en MinAMA). Operaciones Cortas: AMAi lt AMAi AMAi 1 AMAi 1 gt AMAi 2 entonces MaxAMA AMAi 1 (Media Movible Adaptativa baja con un pivote en MaxAMA). Índice: i Filteri FilterIndex StdDev (AMAi AMAi 1, N), donde StdDev es la desviación estándar de series sobre N periodos. N 20 (valor predeterminado). Índice: i FilterIndex 0.0, 1.0, Paso 0.02 N 20 Trades Largos: Una compra al cierre se coloca cuando AMAi gt AMAi 1 amperio (AMAi MinAMA) gt Filteri. Operaciones cortas: Una venta al cierre se coloca cuando AMAi lt AMAi 1 amperio (MaxAMA AMAi) gt Filteri. Índice: i Detener salida de pérdida: ATR (ATRLength) es el intervalo real promedio durante un período de ATRLength. ATRStop es un múltiplo de ATR (ATRLength). Operaciones largas: Una parada de venta se coloca en la entrada ATR (ATRLength) ATRStop. Operaciones cortas: Se coloca una parada de compra en la entrada ATR (ATRLength) ATRStop. ATRLength 20 ATRStop 6 ERLength 2, 100, Paso 2 FilterIndex 0,0, 1,0, Paso 0,02
Comments
Post a Comment